

A 20-dB Quasi-Integrated Horn Antenna

George V. Eleftheriades, *Student Member, IEEE*, Walid Y. Ali-Ahmad, *Student Member, IEEE*, and Gabriel M. Rebeiz, *Member, IEEE*

Abstract—A multimode quasi-integrated dipole-fed horn antenna is presented with a performance comparable to that of waveguide-fed corrugated horn antennas. The antenna has been designed using fullwave analysis and has been fabricated and tested at 91 GHz. The horn has a gain of 20 dB with very symmetric patterns, a Gaussian coupling efficiency of 97%, and a cross-polarization level of -22.7 dB. This antenna provides a significant improvement in integrated antenna designs and is suitable for millimeter-wave communication and radar systems and as a Gaussian-beam launcher in quasi-optical receiver systems.

I. INTRODUCTION

INTEGRATED-CIRCUIT antennas typically suffer from poor coupling efficiencies to quasi-optical receiver systems and thus are not competitive with corrugated horn antennas [1]–[3]. This has limited the widespread use of integrated-circuit antennas at millimeter-wave frequencies. Currently some radio-astronomical receivers use planar spiral or log-periodic antennas for quasi-optical coupling at 300–500 GHz where corrugated horns are very hard to fabricate [2], [3]. Of the family of planar antennas, the integrated horn antenna proved to be a very good candidate for millimeter and submillimeter-wave applications with a Gaussian coupling efficiency of 75–80% [4]–[7]. The main limitation of the standard integrated horn stems from its large flare-angle of 70° which is inherent in the anisotropic etching of silicon. This limits the gain to 13 dB and restricts its 10-dB beamwidth to 90°. In this letter, a quasi-integrated horn antenna is proposed with improved pattern-symmetry, high Gaussian coupling efficiency and higher gain. The quasi-integrated horn antenna consists of a flared machined section attached to a standard integrated horn antenna to form a multimode horn (Fig. 1) [9]. The minimum dimension of the machined section is about 1.4 λ , which permits the fabrication of the quasi-integrated horn up to 1.5 THz. Any processing electronics can be integrated using the silicon portion of the horn. Alternatively, a thin GaAs wafer could be sandwiched between the silicon wafers for integration of high speed devices.

II. THEORY AND MEASUREMENTS

Manuscript received October 16, 1991. This work was supported by the NASA/Center for Space Terahertz Technology at the University of Michigan, Ann Arbor, and the Army Research Office under Contract DAAL03-91-G0116.

The authors are with the NASA/Center for Space Terahertz Technology, Electrical Engineering University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109.

IEEE Log Number 9105842.

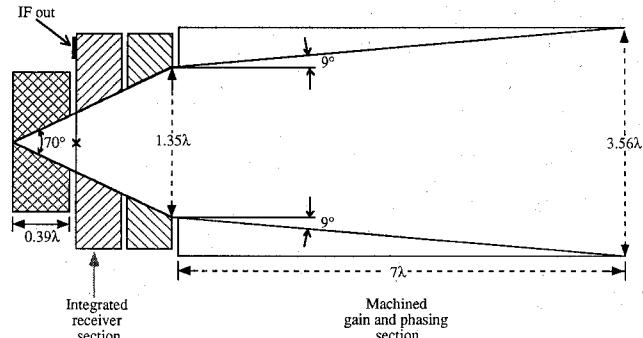


Fig. 1. 20-dB quasi-integrated horn antenna.

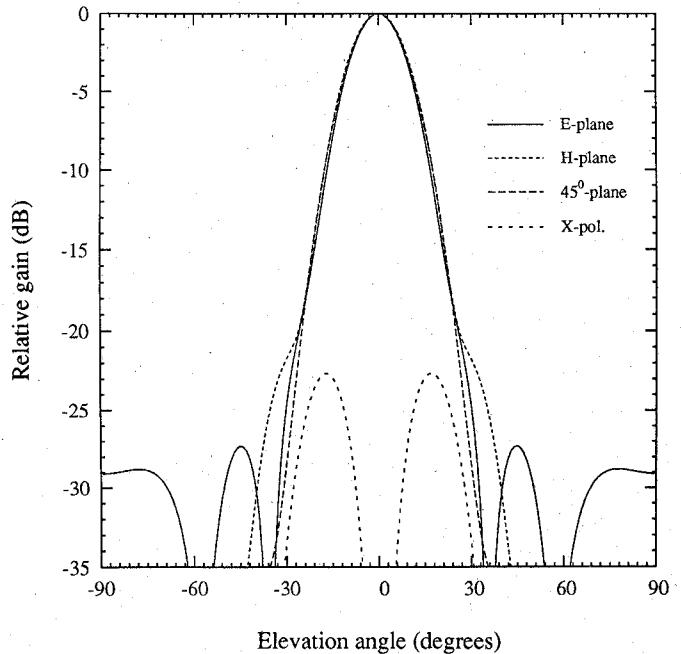


Fig. 2. Calculated far-field patterns.

The abrupt change of flare-angle at the junction of the integrated and the machined section of the horn (Fig. 1) acts as a mode-converter that excites mainly the TE₁₀, TE₁₂/TM₁₂ and TE₃₀ modes. These modes are subsequently properly phased on the radiating aperture by selecting the length and the flare-angle of the machined section. This results in symmetric patterns with low sidelobe-level and low cross-polarization. Also, the machined section transforms the 1.35 λ -square aperture of the standard integrated horn to a larger 3.56 λ -square radiating aperture yielding a gain of 20 dB. The design was performed using a fullwave analysis procedure

TABLE I
THE MAIN RADIATION CHARACTERISTICS OF
THE QUASI-INTEGRATED HORN ANTENNA

Gain	20 dB
Aperture efficiency	62.8%
10-dB beamwidth	34°
Sidelobe-level (E-plane)	-27 dB
Cross-pol. (45°)	-22.7 dB
Beam-efficiency (to -10 dB)	86%
Gaussian coupling	97.3%

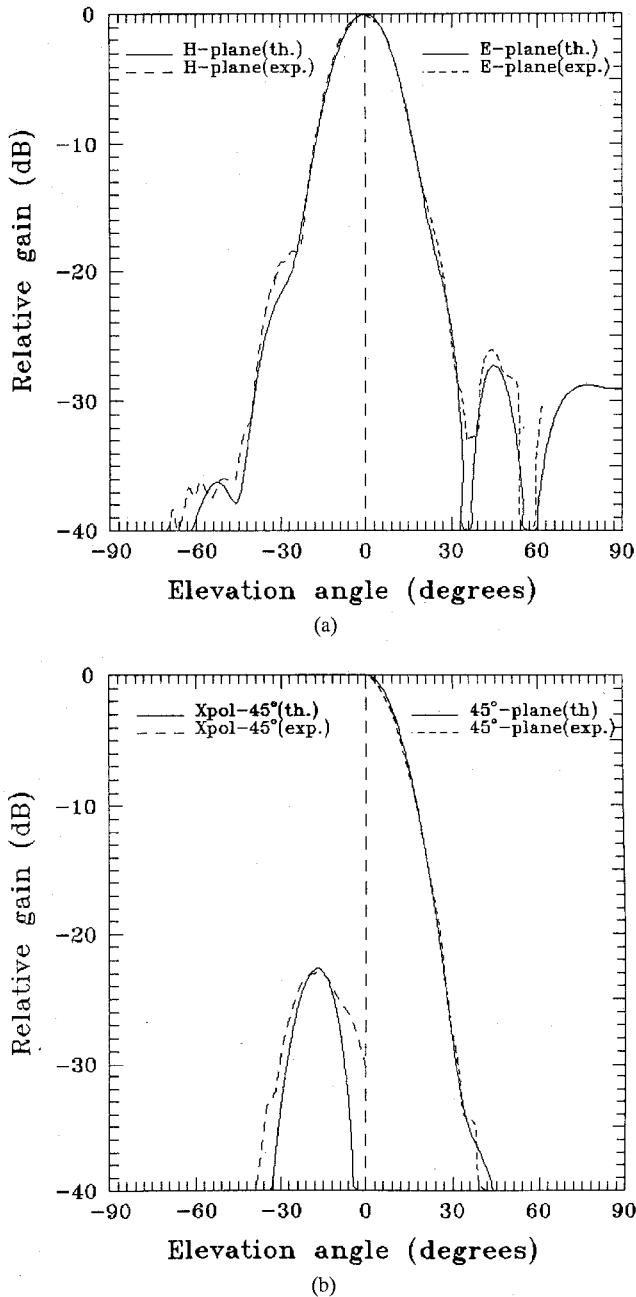


Fig. 3. Predicted and measured patterns at 91 GHz. (a) E/H-planes.
(b) 45°-plane.

that has been developed for dipole-fed horn antennas [8]. The calculated patterns are presented in Fig. 2, where it is observed

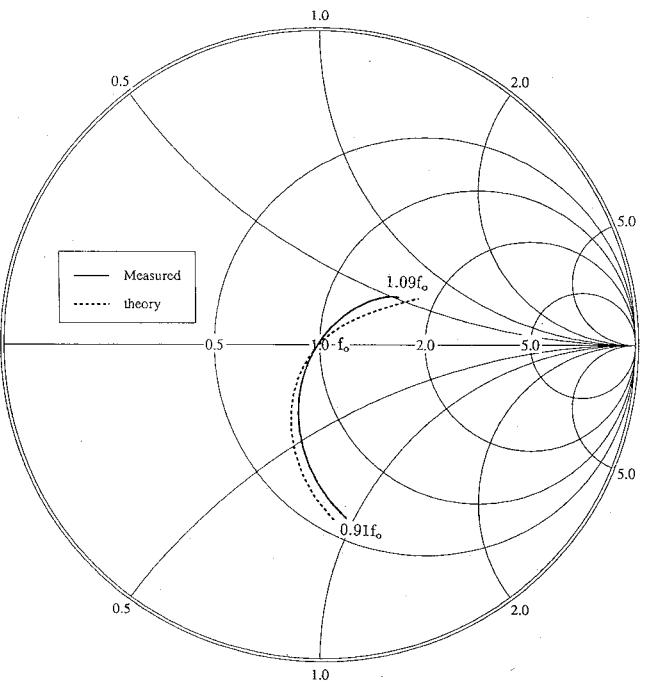


Fig. 4. Predicted and measured input impedance vs. frequency for a feed position of 0.39λ from the apex of the horn (microwave scale model at $f_0 = 6$ GHz).

that the pattern symmetry is excellent down to -20 dB. The main radiation characteristics of the quasi-integrated horn are presented in Table I.

The fundamental Gaussian coupling was calculated by the standard technique of expanding the aperture field into Hermite-Gaussian modes [10]. It is also found that for a bandwidth of $\pm 5\%$, the 10-dB beamwidth does not vary more than 3° and the Gaussian beam coupling efficiency remains always above 96.5%. The high Gaussian coupling along with the high gain of the quasi-integrated horn indicate that the antenna is well suited for Gaussian-beam launching at millimeter wavelengths.

The quasi-integrated horn has been fabricated and tested at 91 GHz. A planar Schottky diode was soldered to the feeding-dipole on the dielectric membrane to serve as the video detector. The comparison between theory and experiment for the E/H and 45°-plane patterns is excellent as it is shown in Fig. 3. The input impedance of the feeding dipole was measured on a 6-GHz scale-model. The feeding dipole was located at a distance of 0.39λ from the apex of the horn resulting in a resonant resistance of 50Ω with a bandwidth of about 10% (Fig. 4). This enables the integration of the quasi-integrated horn with Schottky diodes for receiver applications.

III. CONCLUSION

A new multimode quasi-integrated horn antenna has been introduced as an improvement to the standard integrated horn antenna. The quasi-integrated horn has a gain of 20 dB with highly symmetric patterns and low cross-polarization. For narrowband applications ($\pm 5\%$), the quasi-integrated horn antenna has characteristics which are comparable to those of a waveguide-fed corrugated horn antenna. Currently, receivers

based on this antenna are being developed at 90 and 250 GHz at the University of Michigan. Furthermore, a 23-dB quasi-integrated antenna is currently under design and testing.

ACKNOWLEDGMENT

The authors would like to thank Prof. L. P. B. Katehi for her help and support.

REFERENCES

- [1] D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, "Integrated-circuit antennas," *Infrared and Millimeter Waves*, vol. 10, pp. 1-90, 1984.
- [2] T. H. Büttgenbach, R. E. Miller, M. J. Wengler, D. M. Watson, and T. G. Phillips, "A broad-band low-noise SIS receiver for submillimeter astronomy," *IEEE Trans. Microwave Theory Tech.*, vol. 36, pp. 1720-1726, 1988.
- [3] Q. Hu, Z. A. Mears, P. L. Richards, S. L. Loyd, "Millimeter-wave quasi-optical SIS mixers," *IEEE Trans. Magn.*, vol. 25, pp. 1380-1383, 1989.
- [4] G. M. Rebeiz, D. P. Kasilingam, P. A. Stimson, Y. Guo, and D. B. Rutledge, "Monolithic millimeter-wave two-dimensional horn imaging arrays," *IEEE Trans. Antennas Propagat.*, vol. AP-28, pp. 1473-1482, Sept. 1990.
- [5] Y. Guo, K. Lee, P. A. Stimson, K. Potter, and D. B. Rutledge, "Aperture efficiency of integrated-circuit horn antennas," *Microwave Optical Tech. Lett.*, vol. 4, no. 1, pp. 6-9, Jan. 1991.
- [6] W. Y. Ali-Ahmad and G. M. Rebeiz, "92 GHz dual-polarized integrated horn antennas," *IEEE Trans. Antennas Propagat.*, vol. 39, pp. 820-825, June 1991.
- [7] C. C. Ling and G. M. Rebeiz, "94 GHz integrated monopulse antenna," *IEEE AP-S Int. Symp.*, Ontario, Canada, June 1991.
- [8] G. V. Eleftheriades, W. Y. Ali-Ahmad, L. P. B. Katehi, and G. M. Rebeiz, "Millimeter-wave integrated-horn antennas Part I: Theory, and Part II: Experiment," *IEEE Trans. Antennas Propagat.*, vol. 39, pp. 1575-1586, Nov. 1991.
- [9] P. D. Potter, "A new horn antenna with suppressed sidelobes and equal beamwidths," *Microwave J.*, vol. VI, pp. 71-78, June 1963.
- [10] R. J. Wylde, "Millimeter-wave Gaussian beam-mode optics and corrugated feed-horns," *IEE Proc.*, vol. 131, pt. H, no. 4, pp. 258-262, Aug. 1984.